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It is assumed that a crystal structure in P]- is fixed and that the 15 non-negative numbers Rx, R2, R3, R,, R5; 
R12, R13, R14, R I5, R23, R24, R25, R34, R35, R45 are also specified. The random vector (h, k,l, m, n) is assumed 
to be uniformly distributed over the subset of the fivefold Cartesian product Wx Wx Wx Wx Wof recipro- 
cal space W defined by 

and 

IEhl =Rx, IEkl = R2, IEl[ = R3, IEml = R,, IEnl =Rs; (1) 

IEh+kl =Rx2, IEh+ll = R13, IEh+ml =R14, IEh+nl =Rxs, 
IEk+l[ =R23, IEk +ml----R24, ]k+nl =R25, IEl+m[ =R34, 
]El+hi =R35, IEm+nl =R45; (2) 

h + k + l + m + n = 0 .  (3) 

Then the structure invariant 

(P = (Ph "]- fPk "]- q~l "J¢- (Pm "l- (~0n, (4) 
as a function of the primitive random variables h, k, 1, m, n, is itself a random variable, and its conditional 
probability distribution, given (1) and (2), is derived. The distribution yields reliable estimates for large 
numbers of quintets q~ in terms of the 15 magnitudes (1) and (2). 

1. Introduction and probabilistic background 

The probabilistic theory of quartets and quintets has 
recently been initiated (e.g. Hauptman, 1975, 1976; 
Green & Hauptman,  1976; Hauptman & Green, 1976; 
Fortier & Hauptman,  1977; Hauptman & Fortier, 
1977; Giacovazzo, 1977). It is assumed that the reader 
is thoroughly familiar with this earlier work, in par- 
ticular with the recently formulated neighborhood 
concept and probabilistic background, so that the 
present paper is greatly abbreviated. 

Suppose that a crystal structure consisting of N 
atoms (not necessarily identical) per unit cell in P1 is 
fixed and that the 15 non-negative numbers R1, R2, R3, 
R,, Rs; R12, R13, RI, ,  R15, R23, R24, R25, R34, R35, R45 
are also specified. Define the fivefold Cartesian product 
Wx Wx Wx Wx W of reciprocal space W to be the 
collection of all ordered quintuples (h,k,l,m,n) where 
h, k, 1, m, n are reciprocal vectors. Suppose next that the 
ordered quintuple of reciprocal vectors (h,k,l,m,n) is 
a random variable which is uniformly distributed over 
the subset of Wx Wx Wx Wx W defined by 

IEhI=Rt, IEkI=R2, IE, I=Rs, IEmI=R4,1EnI=R5; (1.1) 

IEh+kl =Rx2, IEh+d =Rx3, [Eh+ml=R14, IEh+nl =R15, 

IEk+l] = R 2 3 ,  IEk+ml = R 2 4 ,  IEk+nl = R 2 5 ,  [El+ml = R34, 

* Presented at the ACA meeting in Asilomar, California, USA, 
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and 
IE~+ nl = R35, ]Em+n] = R45; (1.2) 

h + k + l + m + n = 0 .  (1.3) 

It follows that the random variables h,k,l,m,n, the 
components of the ordered quintuple (h,k,l,m,n), are 
not independently distributed in reciprocal space. In 
order to ensure that the domain of the random variable 
(h, k, 1, m, n) be non-vacuous, it is necessary to interpret 
the exact equality [Eh] =R1 of (1.1) for examples, as an 
inequality, R1 < IEhI<R1 +dR1,  where dR1 is a small 
positive quantity, etc. Then the structure invariant 

q) = q~h "1- qIk + ~l -t- (-Pm + (Pn, (1.4) 

as a function of the primitive random variables 
h,k,l,m,n, is itself a random variable, and its condi- 
tional probability distribution, given the 15 magni- 
tudes (1.1) and (1.2), the major result of this paper, is 
derived. 

Finally, the following usual definition is made 

N 
or,= ~ f~ ,  (1.5) 

j= l  

where J~ is the zero-angle atomic scattering factor for 
the atom labeled j. In the X-ray diffraction case the j) 
are equal to the atomic numbers Zj and are therefore 
all positive; in the neutron diffraction case some of the 
J) may be negative. 
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2. The conditional probability distribution of the 
quintet ¢p, given the 15 magnitudes in its second 

neighborhood 

Under the hypotheses of §1, denote by P~-115(Pi-115) 
the conditional probability, given the 15 magnitudes 
(1.1) and (1.2), that 

cos q~ = + 1 ( -  1), (2.1) 

where ¢p is the quintet (1.4). In order to find P ~115 it is 
necessary first to derive the joint probability distribu- 
tion of the 15 structure factors whose magnitudes, 
(1.1) and (1.2), constitute the second neighborhood of ¢p 
(Appendix I) and then the conditional joint probability 
distribution, given the 15 magnitudes (1.1) and (1.2), 
of the five phases q~h, (Pk, ~P~, ~P~, ¢P~ (Appendix II). Only 
the final formula, the major result of this paper, ob- 
tained directly from Appendix III, is given here: 

1 + 
P~115 = ~ Z-  (2.2) 

where 
K = Z  + + Z-  (2.3) 

and 
1024. 

Z± =exp (_T)  Y' exp(U+ V), (2.4) 
~/12 . . . . .  r/4 5 = ± 1 

1 
T =  a2-2~7~(150"3-100"20"30"4-+0"20"5)RIR2R3R4-Rs, (2.5) 

0"3 
U= ~/2(q12R1R2R12 +q13R1RaR13 +tl14-R1R4-R14- 

+ rllsRIRsR15 + r]23R2RaR23 + r124-R2R4-R24- 
+ r]25R2RsR25 + r134-R3R4-R34- + r135R3RsR35 
+ q4-sR4-RsR4-5), (2.6) 

0"3 
V = 0"3/---g [0'/23/']45R23R45 + r/24r/asR24-R35 

+ t125t134-R25R34-)R1 + t/13t/4-sRlaR4-5 

+ r/14-r/35R14R35 +tllst134R15Ra4)R2 
+ (t/12t/4-sR12R4-5 + ?/14-q25R14-R25 

+ 715 t/z4-R 1 sR24-)R3 "a t- (r/12r/a 5R 12R35 

+tllar]E5RlaR25 + ~15rlEaR15R23)R4 
+ (I'/12r/34- R 12R34- + ~/13/'/24 R 13R24- 

+ / 7 1 4 - / 1 2 3 R 1 4 - R 2 a ) R s ]  

-aa2 ; (tl4-sR4-sR1R2R3 + tlasRasRxRER4- 

+q34-R34-R1R2RsWq25R25R1RaR4- 
+q24-R24-R1R3Rs+q23R23R1R4-R5 
+~15RlsRERaR4-+~14-R14-R2RaR5 
+qlaRlaR2R4-Rs+q12R12RaR4-R5), (2.7) 

and the summation (2.4) is taken over the 1024 sets of 
values 

/'/12 = "~ 1,...,t/4-s = + 1. (2.8) 

It is readily verified that the expected value and vari- 
ance of cos ~o are given by 

and 

Z + - Z -  
e(cos (p)= Z+ + Z-  (2.9) 

4Z+Z - 
var (cos ~o)= (Z ÷ +Z_)2 

respectively. 

2.1. The special case that 
R 23 ~ '  R24 - R25 "~ R34 ~ Ra s -~ R4-5 -~ 0. 

(2.10) 

(2.11) 

In this case (2.4) reduces to 

Z~, 1 s ~exp(  ± 150"3-100"20"30"4"a9/2 +0"20"5.R,R2R3RaRs) 

xcosh[R12 ( 

xcosh [R13 ( 

xcosh JR,4 ( 

x cosh IR15 ( 

~/-"---~ RxR2 ~ 0"~ R3R4R5 

~2/2R1Ra~ 0"--a2 R2R4Rs 

~T/2RIR4~ 0"--32 R2R3R5 

~T/2RIRs~ 0"~ R2R3R4 , 

(2.12) 
so that, in this special case, 

P~-1,5<½ (2.13) 
provided that R12, R13, R14 and Rls are sufficiently 
large, in agreement with the prediction of the second 
row of Table 2 of Hauptman (1977). Clearly there are 
four other similar cases obtained by symmetry. 

2.2. The special case that 
R14 ~-R15~R24 ~-R25~Ra4 ~-Rss~R45 ~-O. (2.14) 

In this case (2.4) reduces to 

Z±_exp ( _  150"~ -- 100"2ff3t74 + t720"5 ) 
0.9/2 R1RERaRgR5 

xcosh Rx2 ~2/2R1R2-T - R3R4R5 

0"3 - -  - -  0"20"4 

0"2 
(2.15) 



SUZANNE FORTIER AND HERBERT HAUPTMAN 831 

so that, in this special case too, 

P~-[ 15<½ (2.16) 

provided that R12 , R13 and R23 a re  sufficiently large, 
again in agreement with the prediction of Table 2 
(row 7) of Hauptman (1977). Now there are nine other 
similar cases obtained by symmetry. 

3. The discriminant 

In recent work on quintets in P1 (Hauptman & Fortier, 
1977) it appeared that the value of the quintet was 
strongly correlated with the value of a certain fourth- 
degree polynomial in the ten magnitudes (1.2), the so- 
called discriminant A of the quintet q~: 

2a~ 2 2 __ (3a2--aza,*) Z R22 A =  ~ 2 R12R34 20"3 
15 ~ 10 

2 (150.3_ 10o.2a3o.4+o.2o.5) (3.1) 

where 
2 2 2 2 2 2 2 2 2 2 

R 1 2 R 3 4 = R 1 2 R 3 4 + R 1 2 R 3 5  + R 1 2 R 4 5  + R 1 3 R 2 4  
15 

2 2 ± R 2 R 2 ± R 2 R 2 2 2 + R l a R 2 5 T  13 45 -3- 14 2 3 + R I 4 R 2 5  
2 2 2 2 2 2 2 2 

+ R 1 4 R 3 5  + R 1 5 R 2 3 + R l s R 2 4 + R l s R 3 4  

2 2 . R  z R 2 +R~sR24 (3.2) + R 2 3 R 4 5  T 24. 35 

and 

Y'. R22 = R22 + R23 + RxZ4 + R25 + R~3 
lO 

2 2 2 2 +R25. (3.3) -k- R24 -{- R25 -]- R34 + R35 

In view of the similarities of the quintet distributions 
in P 1 and P1, it is now suggested, and the initial appli- 
cations confirm (Fortier, Fronckowiak & Hauptman, 
1977; Fronckowiak, Fortier, De Titta & Hauptman, 
1977), that the quintet in P1 and the discriminant A are 
strongly correlated, the largest values of A (or 
RxR2RaR4RsA) corresponding to q~=0 and the 
smallest values of A (or R 1R2RaR4R5A) corresponding 
to ~0=z. 

It is readily confirmed, by inspection of the distri- 
bution (2.2)-(2.4), that if the 15 magnitudes of the 
second neighborhood, (1.1) and (1.2), are mostly large, 
then ¢p_~0. If, on the other hand, the conditions de- 
scribed in §2.1 or §2.2 are satisfied, then it follows from 
(2.13) and (2.16) that ¢p__rc. Inspection of the discri- 
minant shows that, in the first case, A >> 0 but, in the 
second case, A ,~0, in agreement with the conjecture 
that ~p _~ 0 or ~o _~ ~z in the respective cases. 

4. Concluding remarks 

As described in the preceding paragraphs, the initial 
applications of quintets in P]  have been made. In one 
case, with N = 90 identical nonhydrogen atoms in the 
unit cell, 10 000 quintets were generated from a basis 

set of 246 reflections. When ranked on the variance 
(2.10), the first error occurred at the 1004th quintet; 
when ranked on the discriminant the first error oc- 
curred at the 405th quintet. Two additional applica- 
tions, one with N =40, the other with N = 104, were 
made with similar results. Although the most reliable 
estimates were always ~0 = 0, in all cases a handful of 
reliable estimates with q~ = g  were also available. In 
these applications the quintets alone, whether esti- 
mated from the distribution (2.2) or the discriminant A, 
determined unique values, with perfect accuracy, of 
the phases in the basis sets, thus leading unambiguously 
to the crystal structure. A noteworthy feature of these 
applications was the fact that only a small fraction, 
some 10-20~, of available quintets were actually 
generated and used in the phase-determination pro- 
cess. Thus it seems clear that both the distribution (2.2) 
and the discriminant A are capable of yielding reliable 
estimates for large numbers of quintets which in turn 
lead to unique values for a sufficient number of indi- 
vidual phases to determine crystal structures of at 
least moderate complexity. Finally, although the dis- 
criminant A appears to be somewhat less reliable than 
the true distribution (2.2), its ease of calculation makes 
it a viable alternative. 

On the basis of the initial applications described 
here, it appears that quintets will prove to be at least 
as useful in the applications as the quartets have been. 
However, quartet formulas derived from the third and 
higher neighborhoods are now known to be superior 
to those associated with the second neighborhood 
(see, for example, Gilmore, 1976; Kruger, Green, 
Langs & Weeks, 1976) so that comparisons based on 
further studies are needed in order to assess the relative 
importance of quintets and quartets. 

This research was supported in part by Minist6re De 
L'Education, Gouvernement du Qu6bec and Grant 
No. CHE76-17582 from the National Science Founda- 
tion. 

APPENDIX I 
The joint probability distribution of 15 structure 

factors 

Suppose that a crystal structure, consisting of N atoms 
(not necessarily identical) per unit cell in P], is fixed. 
Suppose that the ordered quintuple of reciprocal vec- 
tors (h,k,l,m,n) is a random variable (vector) which is 
uniformly distributed over the subset of the fivefold 
Cartesian product Wx W× Wx Wx W of reciprocal 
space Wdefined by 

h + k + l + m + n = 0 .  (I.1) 

Then the fifteen normalized structure factors 

Eh, Ek, El, Em, En ; 

Eh+k, Eh+l, Eh+m, Eh+n, Ek +l, 
Ek +m, Ek +n, El+m, El+n, Em+n, (I.2) 

AC 33A-10 



832 QUINTETS IN PT: THEORY OF THE FIVE-PHASE STRUCTURE INVARIANT 

as functions of the primitive random variables 
h, k, !, m, n, are themselves random variables. Denote by 

P15=P(Sl,S2,S3,S4,55; S12,S13,$14,S15, 
$23,$24,525,$34,$35,545) (I.3) 

the joint probability distribution of the 15 structure 
factors (I.2) and note that, since the space group is P1, 
each S in (1.3) is real and has the range ( -0% + oo). 
Following the methods referred to earlier (in particular, 
Green & Hauptman, 1976; Fortier & Hauptman, 
1977), one finds P15 correct up to and including terms 
of order 1/N3/2. * 

It turns out that many of the terms in (1.4) contribute 
only to terms of order higher than 1/N 3/2 in the condi- 
tional distribution P ~115 [equation (2.2)]. If one retains 
only those terms of (1.4) which contribute to terms of 
order at most 1/N 3/2 in P~115, then (1.4) reduces to 

1 [ 1__1S2_~$2 2 2 
- -  2 ~  1 2 P15 - (2n)15/2 exp + S 2 + $4 + $5 

I_.  

+ + + s L  + s L  + 

0-3 
+ ~($1S2S12+$1S3S13+$1S4S14+$1S5S15 

+ $2S3S23 + $2S4S24 + $2S5S2s + $3S4S34 
"31- $3S5S35 -4" $4S5S4.5) 

0- 3 
"~- ~212 (S1S23S45 --F S1524S35 -F S1S25534 

+ $2S13S45 +$2S14S35 + $2S15S34.-4- $3S 12S45 

-~- S3S14.S25 -q-S3S15S24--~S4.S12S35 --~ S4S13S25 

+ $4.S 15S23 + $5S 12S34 --~ $5S 13S24 --F $5S14S23 ) 

_ (.30-~____~.a2a4"~ (S,S2S3S4s + $1S2S4S35 
\ 0-2 i] 

-~- S1S2S5S34 -4- $1S3S4S25 -4- S1S3S5524 
"dr- S1S4S5S23 dr S2S3S4S15 "4- S2S3S5S14. 

"31- S2S4S5513 "~- SAS4S5S12 ) 

-F ( !  50-~ -100- 20- 30-4 + 0-2 0- 5) $1S2S3S 4S 

where O(1/N) consists of terms of order 1/N or higher 
which make a contribution only to terms of order 
1/N 2 or higher in the final conditional distribution 
P~115. 

• P15 [equation (I.4)] has been deposited with the British Library 
Lending Division as Supplementary Publication No. SUP 32702 
(5 pp.). Copies may be obtained through The Executive Secretary, 
International Union of Crystallography, 13 White Friars, Chester 
CH1 1NZ, England. 

APPENDIX H 
The joint conditional probability distribution of the 
five phases (~h, ~Ok, ~01, (~Om, lq~n, given 15 magnitudes 

Refer to § 1 for the probabilistic background. Then the 
five phases ~0h, Ok, ~01, ~0m, ~0,, as functions of the primi- 
tive random variables h,k,i,m,n, are themselves ran- 
dom variables. Denote by 

P5115 = (~1, ~2, ~3, ~4, 45 IRa,Rz, R3,R4,R5; 
R12,R13,R14,R15,R23,Rz4,R25,R34,R35,R45 ) (II.1) 

the joint conditional probability distribution of the five 
phases (flh, q)k,q)l,(~m,(Pn, given (1.1)-(1.3). Then Pst15 
is found from Pls [equation 0.5)] by fixing the magni- 
tudes of $1,52, $3, $4, $5; $12, S13, S14, S15, S23, $24, 
$25, $34, $35, $45 in accordance with the scheme 

ISII=Ra, ISEI=RE, ISaI=Ra, IS41=R4,1Ssl---Rs; (I1.2) 

IS121=R12, ISx31=R13, ISa41=R14, IS151=Ra5, 
[$23[-"R23, 1S241--R24, 1S251--R25, 1S34["-R34, 

IS351 = R35, 15451= R45, (11.3) 

i.e. 
$1 = R 1  cos 41, S 2 - -R2 cos (/)2, $3 = R 3  cos 43, 

$4 = R4 cos 44, Ss = R5 cos ~s ; (I1.4) 

$12 = R 1 2  cos 412, $13 = R 1 3  cos 413, $14 = R 1 4 c o s  414, 

$15 = R:5 cos 415, SEa =R23 COS 423 , $24 = R24cos  t~24 , 

$25 -- R25 COS t~25 , $34 -- Ran , cos 434 , 535 - R35 cos 435 , 

S4s = R45 cos 445, (11.5) 

where ~12 is the variable associated with the phase 
q~h+k, etc., summing with respect to the ten S's, 
S 12, S 13, ..., $45, over their two possible signs (+ and - )  
or, equivalently, summing with respect to the ten 4's, 
412, 413,..., 445, over their two possible values (0 and 
n), and multiplying the result by a suitable normalizing 
factor: 

1 
Ps 11 s = ~ Zs 11 s, (I1.6) 

lo24 { 3 
Zs l lS= ~ exp '0.3/2 

e12 ..... e45 = + 1 

× [e12RIRER12 COS (~1 + 42) 

+ el 3RIR3 R 13 COS (41 "q- 43) "-t- e14R 1R4R14 
× cos (~bl + ~4)+ elsR1RsR~s cos ( ~  + ~5) 

+ e23RERaR23 COS (t~ 2 "3 I- 43) "-~ e24R2R4R24 
x cos (4  2 "-~ t~4)-~-825R2RsRE5 cos (4  2 "4-45) 

+ e34RaR4R34 cos (4 3 + ~4) + easR3RsRa5 
x cos (~3 + 45) + e4sR4RsR45 cos (44 + 45)] 

0-3 
+ if31----- ~ [(823845R23R45 + 824835RE4Ra5 

+ 825834R25Ra4)R1 cos 41 

-F (813845RlaR45 +e14easR14Ra5 
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+ e15e34R15R34.)R 2 cos ~)2 

-1- (el 2e4.sR12R4.5 q- e14.e25R14.R25 

-It- el 5e24. R 15R24.)R3 COS ~3 

+(elEeasR12R35 + elaeE5R taR25 

+e15e23R15R23)R4. COS 44. 

+ (e 12e34. R 12 R34. + el 3e24. R 13R24. 
+ ~14~23R14.R23)R 5 COS t~5] 

3O'2 -- O.2O.4. 
-- o.3 [e4.sR4.sRxR2R3 COS (t~ 1 "-~- (~2 "[- t~3) 

-1- easR35R1R2R4, cos (~1 dl- t~2 At- ~4.) 

+ e34.R34.R1R2R 5 cos (~1 + ~)2 "-[- t~5) 

+ e25R25R1RaR4. COS (tP 1 + tP 3 + tp4.) 

+ e24.R24R1R3R 5 cos (t~ 1 -~- (~3 -{- (~)5) 

+ e23R23R1R4.R5 COS (t~ 1 "l- t~4. -Jr- ~5) 

+ e lsR 15R2R3R4 cos (t~ 2 + ~3 -~- ~4) 

+e14.R14R2RaR 5 cos ((I)2 -~ (~3 -Jr" (~5) 

+ e13R13R2R4.R5 cos (~2 + ~4. + ~5) 
) 

-k e12R12R3R4.R5 COS (~3 + ~4 Jr- ~5)]~ 
3 

x exp 115o.3- 100"20"30"4+O"20"5 
• o . 9 / 2  R1R2R3R4R5 

I__ 

x c o s ( ~ 1 + ~ 2 + 4 ~ 3 + ~ 4 . + ~ 5 )  1.  (I1.7) 

Under the transformation 

r/ijrhJ = e~= _ e~i ifif q~i= ~j } 4 ~  ¢ ~j i , j= 1,2, 3,4, 5 (II.8) 

where the 4~'s are equal to 0 or n, (II.7) becomes 

Zs 115 = exp IT  cos (~1 + t~2 -I" t~ 3 -~- t~4. .31- t~5)] 

1024- 
X Z exp [ U  + V c°s  (~1 + ~2 + ~3 + ~4.+ ~5)] 

,n2 ..... ,74.5 = + 1 (II.9) 

in which T, U, V are given by (2.5)-(2.7) and the de- 
pendence on the sum q'x + ~2 + ~3 + ~4 + ~5 is explicit. 
The notation 

1024 

~/12 ..... t/45= + 1 

in (II.9) means that the sum is carried out over all 1024 
sets (r/12,..., r/45) as the ten r/'s range independently over 
the two values _+ 1. The normalizing parameter K5 is 
not needed for the present purpose. Since (II.9) is a 
function of the sum 4~1 + ~2 "4- ~3 ~ t~4"~" ~5, it leads 

directly to the conditional probability distribution of 
the structure invariant (1.4), given the 15 magnitudes 
in the second neighborhood, as shown in Appendix III. 

APPENDIX III 
The conditional probability distribution of  the 

structure invariant tp = tph + % + tp~ + tpm + tpn, given 
the 15 magnitudes in its second neighborhood 

From the probabilistic background described in § 1, 
the structure invariant (1.4), as a function of the primi- 
tive random variables h,k,l,m,n, is itself a random 
variable. Denote by 

Pl I15=P(crPlR1,R2, R3,R4, Rs; 

R12,R13,R14, R15,REa, RE4,R25,Ra4,Ras,R45 ) (III.1) 

the conditional probability distribution of the structure 
invariant, ~o, given the 15 magnitudes (1.1) and (1.2). 
Then (II.6) and (II.9) imply 

1 (III.2) P i l l 5  = ~ Z l 1 1 5  

where 
1024 

Zl115 =exp(Tcos#) ~ ( U +  Vcos#) ,  (111.3) 
r/12 ..... t/45= + 1 

where T, U, V are given by (2.5)-(2.7) and the normal- 
izing parameter K is obtained by summing the right- 
hand side of (III.2) over the two possible values, 0 and n, 
for 4~ and setting the result equal to unity. In this way 
the major result of this paper, (2.2)-(2.4), is derived. 
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